Bi-doped optical fibers and their potential applications

E. M. Dianov

Fiber Optics Research Center of the Russian Academy of Sciences, 38 Vavilov Street, 119333 Moscow, Russia E-mail: dianov@fo.gpi.ru

Outline

- Why Bi-doped fibers?
- Luminescent properties of Bi-doped materials
- Nature of Bi NIR active centers
- Luminescence and optical losses of Bi-doped fibers with different compositions
- Bi-doped fiber lasers and their applications
- Conclusion

Spectral regions of the existing fiber lasers

Transmission and luminescence spectra of Bi-doped silica glass (Fujimoto and Nakatsuka, 2001)

- 1. K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, M. Nakatsuka. Fusion Engineering and Design, **44**, 437 (1999).
- 2. Y. Fujimoto and M. Nakatsuka, Jpn. J. Appl. Phys, 40, L279 (2001).

Luminescence properties of various Bi-doped materials

N	Composition (mol%)	λp (nm)	λe (nm)	FWHM (nm)	τ (μs)	References
1	$96\text{GeO}_2 - 3\text{Al}_2\text{O}_3 - 1\text{Bi}_2\text{O}_3$	800	1300	320	255	M.Peng et al., 2004
2	63SiO ₂ -23Al ₂ O ₃ -13Li ₂ O-1Bi ₂ O ₃	700 800 900 900	1100 1250 1100 1350	250 450 500	550	Suzuki and Ohishi, 2006
3	$50\mathrm{SiO}_2\text{-}30\mathrm{GeO}_2\text{-}15\mathrm{MgO}\text{-}5\mathrm{Al}_2\mathrm{O}_3\text{-}\\1\mathrm{Bi}_2\mathrm{O}_3$	808 980	1280 1155	355 250		J.Ren et al., 2007
4	$65P_2O_5-12B_2O_3-7La_2O_3-6Al_2O_3-9Li_2O-1Bi_2O_3$	530 800 980	690 1150 1270 1125	100 290	4 220 290	B.Denker et al., 2007
5	70GeS ₂ -9.5Ga ₂ S ₃ - 20KBr-0.5Bi ₂ O ₃	808	1230			G.Yang et al., 2007
6	RbPb ₂ Cl ₅ :Bi crystal	633 808 919	1080	~150	140	A. Okhrimchuk et al., 2008
7	55.6 SiO ₂ -22.2MgO-22.2Al ₂ O ₃ - XBi ₂ O ₃ (X=0.25-2)	500 700 800	1160 1125 1270	~150	350-500 300-800	B.Denker et al., 2009

• λp , λe – pump and emission peak wavelengths, τ – lifetime of Bi luminescence.

The expected local structure of Bi ion in BiSG

Sh.Zhou et al, Bi-doped Nanoporous Silica Glass, Adv. Funct. Mater., 18, 1407, 2008

glass A (air) λ_p =280nm, λ_e =465nm (Bi³⁺)

glass B (argon)
$$\lambda_p$$
=280nm, λ_e =465nm (Bi³⁺)
 λ_p =483nm, λ_e =590nm (Bi²⁺)
 λ_p =532nm, 980nm, λ_e =1100nm (Bi⁺?)
 λ_p =800nm, λ_e =1400nm (Bi⁺?)

glass C (hidrogen) no emission

FORC

Fluorescence spectra are vertically shifted for clarity; fluorescence intensity is about zero at 1800 nm for all samples.

M.Yu. Sharonov et al. "Spectroscopic study of optical centers formed in Bi-, Pb-, Sb-, Sn-, Te-,

Extinction coefficient of Mg-Al-Si glass at the peak wavelength 500 nm versus Bi₂O₃ concentration

B.Denker et al., "Absorption and emission properties of Bi-doped Mg-Al-Si oxide glass system", Appl. Phys. Lett., (2009).

What is a nature of Bi-related centers emitting in near IR?

- •Bi⁵⁺ Fujimoto and Nakatsuka, 2001
- •Bi⁺ X. Meng et al., 2005, Sh.Zhou et al. 2008
- •BiO J. Ren et al., 2006
- •Bi₂, Bi₂⁻, Bi₂²⁻ Khonthon et al., 2007; Sokolov et al., 2008, Denker et al., 2009
- •Point defects Sharonov et al., 2008, in glass Lakshminarayana et al., 2009

Wavelength, nm

0.0

Bi-doped fiber lasers (1140-1215 nm) based on alumosilicate fibers

- 1. E.M.Dianov et al. "CW bismuth fiber laser", Quant. Electron. 2005;
- 2. E.M.Dianov et al. "Yellow frequency-doubled bismuth fiber laser", ECOC'2006
- 3. V.V.Dvoyrin et al. "Yb-Bi pulsed fiber laser", Opt.Lett., 2007.
- 4. A.A.Krylov et al., "A mode-locked Bi-doped fiber laser", OFC'2007.
- 5. E.M.Dianov et al. "High-power CW bismuth fiber laser", JOSA B, 2007.
- 6. I.Razdobreev et al. "Efficient all-fiber bismuth-doped fiber laser", Appl. Phys. Lett., 2007
- 7. A.B.Rulkov et al. "Narrow-line 1178 nm CW bismuth –doped fiber laser with 6.4 W output for direct frequency doubling", Opt. Express, 2007.
- 8. V.V.Dvoyrin et al. "Effective Bi fiber lasers", IEEE J.QE, 2008.
- 9. S. Yoo et al., "Bismuth-doped Fiber laser at 1.16 μm", CLEO/QELS'2008.
- 10. I.A.Bufetov and E.M.Dianov, "Bi-doped fiber lasers", Laser Physics Letters, 2009.
- 11. S.Kivistö et al., "Mode-locked Bi-doped all-fiber laser with chirped fiber Bragg grating", IEEE Photon. Technol. Lett., 2009.

Scheme of a CW Bi-doped fiber laser

Output power for various laser wavelengths vs launched pump power at $\lambda_p = 1070$ nm (room temperature)

E.M.Dianov, A.V.Shubin, M.A.Melkumov, O.I.Medvedkov, I.A.Bufetov, JOSA B, 2007.

Optical losses of the Bi-doped fiber vs launched power at different temperatures

Output power of the Bi-doped fiber laser vs the fiber temperature at the pump power of 8W

		mark	Core glass composition, (concentration in mol.%,)
	a	PGSB	83.5SiO ₂ -1.5P ₂ O ₅ -15GeO ₂
	b	GSB	85SiO ₂ -15GeO ₂
	c	PSB	92.5SiO ₂ -7.5P ₂ O ₅
	d	ASB	$97SiO_2$ - $3Al_2O_3$

Optical losses (1) and luminescence spectra (2) of PGSB, PSB, GSB, ASB fibers

Vertical arrows indicate the pump wavelengths.

On/off gain spectra of PGSB, PSB and GSB fibers

FORC

Watt-level Bi-doped fiber lasers, operating at 1300 – 1500 nm

Possible applications of Bi-doped fiber lasers and amplifiers

- optical fiber communication systems using a spectral region of 1300-1500 nm for transmission
- Frequency-doubled Bi-doped fiber laser operating at 570-750 nm
 - ophthalmology and dermatology
 - laser guide star for adaptive optics of large optical telescopes (589 nm)
- generation of ps and fs pulses in a spectral region of 1140-1500 nm

Conclusion

- Efficient generation of Bi-doped fiber lasers in a spectral region of 1140-1550 nm is a new breakthrough in laser technique
- Further fundamental researches are necessary to clear up the nature of Bi-connected active centers, which is unsolved problem yet

